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Let E be a normcd linear space, A a bounded set in E, and G an arbitrary set in
E. The relative Chebyshev center of A in G is the set of points in G best approx­
imating A. We have obtained elsewhere general results characterizing the spaces in
which the center reduces to a singleton in terms of structural properties related to
uniform and strict convexity. In this paper, an analysis of the Chebyshev norm
case, which falls outside the scope of the previous analysis, is presented.

INTRODUCTION

When E is a normed linear space and AcE is bounded, the Chebyshev
center of A is the set of elements of E best approximating A. When also
GeE, we may consider the set of elements in G best approximating, from
amongst all elements in G, the set A. This is called the relative Chebyshev
center of A in G.

The first part of this work, [I j, develops the connection among structural
properties of relative centers, convexity properties of the spaces, and the
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closeness of the resemblance of the space to a pre-Hilbert space. This extends
the work of Garkavi [7], of Day et al. [3] and of Rozema and Smith [17].

In the present paper we restrict our attention to the case where the space is
C[a, b] endowed with the uniform norm, Le., we search for

min (max Ilf - u II) = min max max If(t) - u(t)l,
UE.J' fES UE,J' fES IE[a.b]

where S is the set of functions to be approximated and .fT is the approx­
imating family. This type of problem has been studied by several authors in
recent years (e.g. [4,6,9, 10, 11, 13 D. Mixed norms have also been
discussed. For example, the problem of finding min(llfl - ull oo + IIf2 - ull oo ),

involving the II and uniform norms, for two functions, has been investigated
by Ling et al. [14]. Another, somewhat related problem, involves vectorial
approximation (see, e.g., [2,8 D.

We focus our attention on the case where the approximating family is n­
unisolvent. This is the natural framework for examining questions of
uniqueness of best approximants.

We note that in spite of the fact that the general C[a, b] problem can be
reduced to a problem involving the approximation of two functions, essential
differences exist between these problems and problems involving the approx­
imation of one function, even where the range of the approximating functions
is restricted (for an analysis of that problem, see [18 D. These differences
predicate a more complicated type of analysis, resulting in substantially
different conditions for uniqueness, and a different type of characterization.

The approximating families will be taken as extended n-unisolvent (non­
linear) families, but the results are new even for the linear case of
Tchebycheff systems. The proofs involve a somewhat delicate analysis of
patterns of sign changes, and yield a full characterization of the situations
where the center consists of exactly one element.

1. GENERAL CHARACTERIZATION OF THE CENTER

This section is devoted to a brief discussion of general results concerning
centers in C[O, 1]. We recall the simple observation that in this particular
norm a reduction to the case involving two functions, the upper and lower
envelopes, is possible. We then present a proof of the characterization
theorem for centers with respect to general n-unisolvent families, employing
ideas to be utilized in the proof of the main theorem in Section 2.

The following simple observation has been made by several authors (see,
e.g., [5 D. When A c C[0, 1] is compact, then the functions
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Au(t) = sup{f(t);fEA} and AL(t) = inf{f(t);fEA} are continuous.
Furthermore, when g E ClO, I] we have

r(g,A) = sup{llf - gll;f E A}

= sup{lf(t) - g(t)l;f E A, t E [0, I]}

= sup{max(Au(t) - g(t). g(t) - AI(t); t E [0, 1])f

= max(IIA u - gil, II g - Al II) = r(g; Au, AIJ.

Hence, the problem of relative centers of compact sets in CI0, 11 is
reducible to a problem of relative centers for pairs of functions (J, g), with
f? g. The latter type was discussed in a general framework in Section 2 of
[1]. In the subsequent analysis we restrict ourselves to unisolvent n­
parameter approximating families, and for the corresponding problems we
establish existence, characterization and uniqueness properties.

Let .T c ClO, 1] be an n-parameter approximating family, and define the
relative center of (J, g) with respect to.T (in the Chebyshev sense) by

Z(T; J, g) = {u* E .T; r(u*; J, g) = min(r(u; J, g); u E .T)~. (1.1)

Note that the existence of such u* is assured by compactness;
furthermore, it is assured even for families which are dense compact on X
(i.e., families ,? such that every bounded sequence of elements of ,,?' has a
subsequence converging pointwise on a dense subset Y of X to an element of
,?). This was proved by Dunham [6].

We now restrict ourselves to unisolvent families. We start by recalling
some of the relevant definitions and properties. For details and a thorough
discussion of the place such families occupy in Approximation Theory, see,
e.g., [15].

DEFINITION 1.1. The n-parameter approximating family .T = {F(a; t);
aESc R n} of functions defined on [0, 1] is n-unisolvent if for any given set
{t;} 7=1 of distinct points in [0, I] and any set {y;} 7=1 of arbitrary numbers,
there exists a unique a such that

F(a; tJ = Yi' i = 1,... , n. (1.2 )

LEMMA 1.2 (see [15, p.72]). The solution F(a; t) of (1.2) is a
continuous function of the t/s and the y/s; i.e., given e >0, i, ji, there, exists
a (j >°such that

max(lli - i'll, liji - ji'll) < (j~ IIF(a; t) -F(a' ; t)lloo < e, (1.3)

where a' is the solution of (1.2) for i', ji'.
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Applying the standard limit argument used for T-systems, we deduce:

COROLLARY 1.3. If.7 is n-unisolvent and a*- b, then F(a; t) - F(b; t)
has at most n - I zeros in [0, I]. Here non-nodal zeros are counted twice
(an interior point to is a non-nodal zero of f if f(to) = °and f does not
change sign at to)'

We conclude that for a fixed i, the mapping y -4 F(a; .) is a
homeomorphism of S onto .gr. Hence, each compact set in qo, II has a
relative Chebyshev center in Y. We recall, furthermore, that analogues of
the classical results for Chebyshev sets are valid for general n-unisolvent
families, to-wit,

LEMMA 1.4 [15, p.93]. Let.7 be n-unisolvent on [0, 1] and let
fE qo, 1). Thenfpossesses a unique best Chebyshev approximation charac­
terized by the existence of an n + I-point alternance.

Coming back to the problem at hand, we introduce now some additional
notations and definitions, tailored for our needs.

DEFINITION 1.5. The set (t p ... , tk ), t l < t2< ... < tk , is called a k-point
alternance for the approximation by u to f and g (abbreviated as the
(u;f, g)-approximation) if either

(1.4 )or
r(u; f, g) = f(t I) - u(t l ) = u(t2) - g(t2) = f(t 3) - u(tJ = .

r(u; f, g) = u(t)) - g(t l ) = f(t2) - u(t2) = u(t3 ) - g(t3 ) = .

A point to such that fCto) - uCto) = r(u; f, g) is called a (+ )-point, while a
point to such that u(to) - g(to) = r(u; f, g) is called a (- )-point. Both kinds
are called (e)-points. Following Dunham r5], we introduce the following
definition:

DEFINITION 1.6. The point to is called a straddle point with respect to
the (u;f, g)-approximation if it is both a (+)- and a (-)-point, i.e., if

(1.5)

We are now ready to state the first theorem for relative centers of (f, g)
with respect to unisolvent families. The theorem is due to Dunham [5]. We
present here our own proof, which is different from Dunham's, since our
methods will be used subsequently to obtain further results.

THEOREM 1.7 [5]. Let f, g E qo, 1], with f ~ g, and let .7 be an n­
unisolvent family in qo, 1]. Then u* E Z(Jir;f, g) if, and only if, either:
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(a) (u*;f, g) has a straddle point, or (b) (u*;f, g) has an n + l-point alter­
nance. In the latter case, Z(Y;f, g)= {u*}.

Proof Sufficiency: If (u*;f, g) has the straddle point to' then for
each u

r(u; J, g) >Hf - g)(to) = r(u *; J, g),

completing the proof in this case. Suppose next that (u*;J, g) has the n + 1­
point alternance to'" tn' and assume for definiteness that

For each u E Z(T; f, g) we must have

max [f(t i ) - u(ti ), u(t;) - g(t i )]::;;: r(u*;J, g),

Combining with (1.6), this yields

i = 0, I,... , n.

i = 0, I,..., n.

Thus, u* - u has at least n zeros (where multiplicities are counted as in
Corollary 1.3). This is possible, in view of Corollary 1.3, only if u* = u.
Hence, u* is the only element of the center.

Necessity: Assume that u* has no straddle points and that it has only
k + I points of alternance, 0 ::;;: k < n. Since (u *; f, g) has no straddle points,
we have

2r(u*;J, g) -Ilf - gil = 50 > O. (1.7)

With no loss of generality we may assume that the first (e)-point to is a (+)­
point. We then sequentially define

to = min {t; t is a (+ )-poinq,

10 = min{t;f(t) - u*(t) >r(u*;J, g) - 20},

t 1 = min jt; t is a (-)-poinq,

io = max{t; t < t[,J(t) - u*(t) >r(u*;J, g) - 20f,

11 = min{t; t > io' u*(t) - g(t) >r(u*;J, g) - 20},

t2 = min{t; t > tl' t is a (+)-point},

etc. Now let A j = lL, i;], i = 0,..., k. There are k + I such intervals since each
interval contains precisely one of the alternance points. Observe that the A;'s
are disjoint closed intervals satisfying A 0 <A 1 < ... <A k •
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Furthermore, all (+ )-points are in U A 2i' while all (-)-points are in
U A 2i +l' Note finally that

max(lf(t) - u*(t)l, lu*(t) - g(t)l) < r(u*;f, g) - 2b,

for all t E [0, 11\~o Ai' (1.8)

Now choose a sequence of points t. < t 2 < '" < tn _ I satisfying the con­
ditions

(a) 1; E (ii-Ill;), 1 ~ i ~ k,

(b) if n i= k (mod 2), then

k+1~i~n-1. (1.9)

If n == k (mod 2), then (1.9) is required to hold for i ~ n - 2, and 'i,,- J = 1.
We discuss first the case n i= k. We adjoin a point 10 in A o' and construct

a function u E Y satisfying

u(to) = u*(to) + '1,

u(ti ) = u*(tJ, i = 1,... , n - 1,

where '1 is chosen so small that II u - u*II < b. This is possible in view of the
continuity properties expressed in Lemma 1.2.

Note that u - u* cannot vanish at any point other than the t/s in view of
the unisolvence. Hence, u(t) > u*(t) on A o' and in view of the way the t;'s
are placed, we have

(-lnu(t) - u*(t)] >0

Thus, we obtain

if tEA;, i = 0, 1,..., k.

~ 0 < r(u*;f, g) - J < f(t) - u(t) < f(t) - u*(t),

(o < r(u*;f, g) - J < u(t) - g(t) < u*(t) - g(t),

In the complement of Uf~oAi' we clearly have

t EA 2;,

i = 0, 1,..., k - 1.

tEA 2i + 1 ,

max(lf - ul, lu - gl) < r(u*;f, g).

Combining these inequalities, we conclude that r(u;f, g) < r(u*;f, g), i.e.,
that u* is not in the center.

The second case is similarly handled. Q.E.D.
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COROLLARY 1.8. The point i is a straddle point of some triplet (u; f, g),
if and only if

f(i) - g(i) = 2r(?;f, g). (1.10)

Thus, if i is a straddle point for one triplet, it is a straddle point for all
triplets, and u*(i) = [f(i) + g(i)Jl2for all u* E Z(?;f, g).

Proof Suppose that (1.10) is satisfied, and let u* E Z(.T;f, g). Then

max [f(i) - u*(i), u*(i) - g(i)J <r(u*;f, g) = r(T;f, g).

Combining this with (1.10), it follows that

f(i) - u(i) = u(i) - g(i) = r(u*; f, g) = r(,?; f, g), (1.11)

so that i is a straddle point of (u *; f, g). Conversely, if i is a straddle point
of (u*;f, g), then by the previous theorem, u* E Z(?;f, g), and using
(1.11) we have (1.10).

The last observation in the corollary is a consequence of (1.11). Q.E.D.

2. UNIQUENESS

We examine in this section the conditions under which the center will
reduce to a singleton. It will be shown that the situation here is more
complicated than the corresponding one in the approximation of one
function, and an analogue does not exist. An intermediate situation, where
some of the difficulties are beginning to show, occurs in the study of the
approximation of discontinuous functions (see, e.g., [16]).

The first result we have in this direction is a simple consequence of the
definition of n-unisolvence and Corollary 1.8.

LEMMA 2.1. Let,? be an n-unisolvent family and let f, g, f ~ g, be two
continuous functions. If there exist n straddle points (i.e., points satisfving
(1.10)) then Z(.?;f, g) is a singleton.

The complete analysis of the conditions under which Z(.?;f, g) is a
singleton requires more than standard perturbation methods, due to special
phenomena which do not have a counterpart in the theory of approximation
of one function. Even the theory of approximation of one function by
functions with restricted ranges (see, e.g., Sippel [18]) does not exhibit these
difficulties, and has substantially different uniqueness characteristics. As a
simple example of the special phenomena we have here, we observe that the
subsequent discussion implies that iff, g are continuously differentiable and
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,T = [1, x j, then the existence of one interior straddle point suffices to ensure
that Z(T; f, g) is a singleton.

We consider first the simplest case, where all the functions under
consideration are n-times differentiable.

DEFINITION 2.2. The n-parameter family ,T of n-times differentiable
functions will be called an extended n-unisolvent family if for any prescribed
set of "Hermite-data," i.e., data of the form

m

i= I, ... ,m;}=O, I, ...,ki-l; \' ki=n
icc,1

(2.1 )

there exists a unique u E.T satisfying (2.1).

This generalizes, to unisolvent families, the concept of an Extended
Tchebycheff system, which proved useful in the study of Tchebycheff
systems (see [12]). Naturally, each Extended Tchebycheff system is an
extended n-unisolvent family.

Remark. The natural analogue of Lemma 1.2 is valid for extended n­
unisolvent families.

DEFINITION 2.3. Let ,T be an extended n-unisolvent family, and let
f> g, where f, g E Cn(I). The straddle point to has the deficiency index k,
k ~ n, if k is the largest integer such that

}= 1,... , k - 1. (2.2)

Since u E Z(.T;f, g) implies that u(to) = ((I + g)(to»/2 at a straddle
point to of deficiency k, u has to satisfy k Hermite-type conditions there.

LEMMA 2.4. Let ,T be an extended n-unisolvent family, and let f >g,
where f, g E Cn(I). Let to be an interior straddle point, with deficiency index
k. Then 2 ~ k ~ n. If k < n, then k is even.

Proof Let u* E Z(T;f, g). Then

(2.3)

Indeed, assuming that I' (to) > u *, (to)' we observe that in a small right
neighborhood of to, the inequality f(t) - u*(t) > f(to) - u*(to) is valid in
contradiction to the assumption that

f(to) - u*(to) = r(u*; f, g).

A similar analysis, involving the left neighborhood, is obtained if
I'(to) < u*'(to)' Hl;nce, I'(to) = u*'(to)' The right-hand side equality is
similarly derived. Note that this type of result does not extend to second
order derivatives, where only the weak inequalities f"(to) ~ u* "(to) ~ g"(to)
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have to hold. If f"(to) = g"(to), then the chain collapses, and u *"(to) has to
take the common value. If

and 2j <n - 1,

then the argument used in proving (2.3) now yields

f(2j+ l)(tO) = U(2 j + I) (to) = g(2 j + I) (to)

establishing the evenness of k. Q.E.D.

Remarks. 1. If the straddle point to is an endpoint, then the deficiency
index k does not have to be greater than 1. Similar arguments applied to the
kth derivative at to yield only

j<k)(to) ~ u(k)(to) ~ g(k)(to)' (2.4)

2. The concept of a deficiency index can be extended to the case when
f and g are not smooth. It is defined then as the number of Hermite-type
conditions that have to be satisfied by the elements of ZeiT; f, g) at to.
Lemma 2.4 is no longer valid, since the deficiency index may depend on the
degree of smoothness. The analysis in this case proceeds along similar lines
and involves one-sided Dini derivatives.

We proceed to define the concepts of a boundary straddle point, deficiency
induced by an element of the center, and total deficiency. The need for these
stems from the observation that a straddle point may be a cluster point of
(e)-points, limiting the freedom to perturb functions of the center.

LEMMA 2.5. Let ii E Z('5"; f, g) and let. y be a straddle point of
deficiency k. If

ii(j)(y) = g(j)(y), j = k, k + 1,... , k + m - I, m:) 1, (2.5)

and y is a cluster point of (+)-points, then

j = k, k + 1,..., k + m - 1, (2.6)

for all u E Z(.T;f, g). Similarly, if

j = k, k + 1,... , k + m - 1, (2.5 ')

and y is a cluster point of (- )-points, then

u(j)(y) = f(j)(y),

for all u E Z(.iT;f, g).

J=k,k+ 1,...,k+m-l, (2.6')

Proof We prove (2.6), the proof for the other case being similar. The
proof proceeds by induction on m. We start with m = 1, and note that the
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fact that y has deficiency k and relation (2.4) imply that for any
u E Z(.T;j, g)

(2.7)and
u(j)(y) = uU)(y), j = 0, 1,... , k - 1,

U(k)(y) ::;; g(k)(y) = U(k)(y).

If U(k)(y) <U(k)(y) then, in view of (2.7), in a sufficiently small
neighborhood of y, u(t) < u(t). Now let t* be a (+)-point of u lying in this
neighborhood. Then we have the chain of inequalities

r(u;j, g) ~ III - ull ~ (f - u)(t*) > (f - u)(t*) = III - ull = r(T;j, g),

contradicting the assumption that uE Z(T;j, g). Hence (2.6) must hold for
m = I. The induction step is similar, proving (2.6) for general m. Q.E.D.

We are thus led to the following definition.

DEFINITION 2.6. (a) Let uE Z(T; j, g) and let y be a straddle point of
deficiency k, which is a cluster point of (e)-points. If y is a cluster point of
(+)-points and m is the largest integer °::;; m ::;; n - k such that

u(j)(y) = gUl(y), j = 0, 1,... , k + m - 1, (2.8)

then m is called the upper u-induced deficiency of y. If y is a cluster point of
(-)-points and m is the largest integer 0 ::;; m ::;; n - k such that

j = 0, k, ... , k + m - I, (2.9)

then m is called the lower u-induced deficiency of y.

(b) Let uE Z(cT; j, g) and let y be a straddle point of deficiency k
which is not a cluster point of (+ )-points. If U(k)(y) = g(k)(y), then y is called
a (- )-boundary straddle point. A (+ )-boundary straddle point is similarly
defined.

DEFINITION 2.7. Let y be a straddle point of dificiency k. The total
deficiency h of y is defined as k if y is not a cluster point of (e)-points, and as
m + k when y is a cluster point of (e)-points and m is defined by
Definition 2.6.

Remark. Note that, in view of Lemma 2.5, the total deficiency of a
straddle point y is independent of the choice of U.

We return now to the characterization problem, and recall that unicity has
been established for the case where there are n straddle points. Hence, we
may assume in the subsequent discussion that the number of straddle points
is smaller than n.

Let u E Z(Y;j, g) and let E u be the set of its (e)-points.
We define now a mapping x(t) from E u into the set of finite subsets of the

real line with the following properties:
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(1) x(t) is monotone, i.e., if t I < t2 then max x(t I) <min x(t2).

(2) If t is an (e)-point which is not a straddle point, then x(t) is a
single point. If t is a non-boundary straddle poi!lt of total deficiency hI' then
x(t) consists of ht points. If t is a boundary straddle point of total deficiency
hI' then x(t) consists of ht + 1 points.

An explicit formula for a mapping with these properties is given by

x(t) = t + H t + II' if t is not a straddle point,
hi-I

= U {t+Ht+lt+j},
j=O

hi

= U {t+Ht+lt+j},
j=O

if t is a non-boundary straddle point,

if t is a boundary straddle point. (2.10)

Here h t is the total deficiency of t, H t = Ls< t h" and It is the number of
boundary straddle points that are smaller than t.

We consider the range of x(Eu) as a subset of IR and define a function a
on this set as follows: a(s) has the value + I (-I, resp.) if the point s is in
one of the following categories: (a) s is the image of a (+ )-point « - )-point,
resp.), (b) s is the rightmost point of x(t), where t is a (+)-boundary «-)­
boundary, resp.) straddle point, (c) s is the leftmost point of x(I), if I is a
(+)-boundary «-)-boundary, resp.) straddle point; a(s) has the value °
otherwise.

We recall now some notation concerning sign changes of real valued
sequences and functions (cf. [12 j, where the concept is extensively utilized).

Notation. 1. Let x= (x I'"'' x N ) be a finite sequence of real numbers.
Then S + (x) denotes the maximal number of sign changes of the sequence
where the zeros (if they appear) are assigned arbitrary signs.

For example, S+[(l,O,O, 1)]=2, S+[(1,0,0,0)]=3.

2. Let a be a real function defined on a subset A of the real line. Then

where the supremum is taken over all N and over all choices of ordered N­
tuples from A.

We are now ready to fully characterize the case of uniqueness.

THEOREM 2.8. Let f, g E c(n) (I), f ~ g, and let, T be an extended n­
unisolvent family. Then the set Z(.T; f, g) is a singleton if and only if either

r

'V(a) ~ hi ~ n,
i= I

where hi '00" hr are the total deficiencies of the straddle points, or

(2.11 )
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(b) there exists a function u* E Z(51'; J, g) such that

S+(a) >n, (2.12)

where a is the function corresponding to u *.

Remark 1. Note that the theorem implies that when there are no
straddle points, the function u* is the only element of Z(5T;J, g) if and only
if there exists an (n + 1)-alternance.

Remark 2. The proof carries over, mutatis mutandis, to the case whereJ,
g are non-smooth. The technical modifications involve the use of one-sided
Dini derivatives.

Proof Sufficiency: Assume first that (2.11) holds. Then we have n
Hermite-type conditions that u* must satisfy in order to be in Z(.5T;J, g).
Since 51' is an extended n-unisolvent system, we conclude that these
conditions determine u* uniquely.

Assume next that there exists a function u* E Z (51'; J, g) such that
S + (a) >n. Let Z I"'" Z n+ I be a sequence of points of x(Eu') for which
S+ [(a(zl)"'" a(zn+I))] = n.

Let u be any other function in Z(.5T;J, g), and consider the difference
v = u - u*. We will prove that v == 0. Observe that although v is not a
function of .5T, it has to vanish identically if it has n zeros (counting
multiplicities). Indeed, if v has n zeros then u* and u satisfy the same n
Hermite data, and therefore must coincide since they belong to an extended
n-unisolvent family.

Consider the ordered sequence Z 1"'" Z n + I' If Z i is the image of a (+)­
point, then v[x-l(zJ] >0. Similarly, if Zi is the image of a (-)-point, then
v[x-l(zJ] ~ 0. Note that if 1 is a non-boundary straddle point with total
deficiency h then there are at most h points in the z i-sequence whose pre­
image is 1, and that

vUl(i) = 0, j=O,l,...,h-1. (2.13)

If 1 is a boundary straddle point, then it has at most h + 1 image points in
the zcsequence, and we have V(h)(i) >°for a (+ )-boundary point, V(h)(i) ~ 0
for a (-)-boundary point.

We now construct the vector (t1''''' tn +I) as follows: {t;}7+ I is a weakly
ordered sequence composed of pre-images of the z;'s, according to the
following rules: (1) pre-images of the (e)-points which are not straddle points
are in (t I"'" tn + I)' (2) Let 1be a straddle point of total deficiency h, which
either is not a boundary straddle point, or is such that V(h)(i) = O. If, in the
Zcsequence, there are j points whose pre-image is l, then 1will appear in the
t i-sequence j times. (3) Let 1be a boundary straddle point of total deficiency
h, such that V(h)(t) *' O. If there are j ~ h points whose pre-image is 1, then t
will appear j times in the ti-sequence.
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If, however, there are h + 1 points in the z(sequence whose pre-image is i,
the point 1will appear only h times, and an additional point t' near 1will be
chosen. If 1= 1, then t' < t, whereas if 1*- 1, 1< t'. We observe that if t' is
sufficiently near i, the sign of v(t') is positive if i is a (+ )-boundary point,
and is negative if i is a (-)-boundary point.

The conformity of signs between the 'v(ti)'s and the a(zi)'s implies now
that

(2.14 )

Let v(tp ) be the first non-zero entry in this sequence. If such an entry does
not exist, then vet) has more than n zeros (counting multiplicities), and the
proof is complete. Thus, v has p - 1 zeros, {ti}~-I, in [tl' tp )' Next let v(tq ),

q ~ p + 1, be the last entry in the chain of non-zero entries following v(tp )'

By (2.14), the values v(tp ),"" v(tq ) alternate in sign, so that continuity
implies the existence of q - p zeros in (tp , tq ). We have therefore q - 1 zeros
in [t l , tq ). If q = n + 1, the proof is finished. If not, v(tq + I) = 0, and we have
to examine two possibilities:

(i) v(tJ = 0, i ~ q + 1. In this case we are assured of­
q - 1 + (n + 1) - q = n zeros and the proof is finished.

(ii) There exists a first non-zero entry v(tr)' r > q + 1. It will suffice to
show that in (tq , tr) there exist r - q zeros, so that in [t l , tr) there are r - 1
zeros. The rest of the proof then follows by repeating (a finite number of
times) the steps outlined above.

If r-q is odd then the signs of v(tr) and v(tq ) are different by (2.14). On
the other hand, the number r - q - 1 of zeros in (tq , t r ) following from the
definition of t r is even. Thus, there has to be another point of sign change, or
a higher multiplicity of one of the zeros. In either case, there will be r - q
zeros in (tq , t r ), concluding the proof.

Necessity: We assume that (2.11) does not hold, and that there exists
a function UoE Z (.5"; J, g) such that S + (a) = p < n. Note that, in view of
Theorem 1.7, this implies the existence of straddle points, and
Ilf - gil = 2r(Y';J, g). We now proceed to exhibit another function
U l' U 1 *- uo' in Z(,'7; J, g). The method of proof bears some resemblance to
that used in the proof of Theorem 1.7, with appropriate modifications
necessitated by the existence of straddle points. We start with the case where
no straddle point is a cluster of (e)-points. Let YI ,..., Yr , 1 ~ r, be the straddle
points, and let their deficiencies be k l , ... , k r , with

640/38/4-2

r

k= L k i < n.
i= 1

(2.15)
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Since no Yi is a cluster point, it follows that the total deficiencies in this case
are equal to the ordinary deficiencies. For each i, let e(Yi) be chosen
sufficiently small, so that

does not contain any (e)-points except Yi' Let

e = min e(Yi)' Vi = (Yi - e, Yi + e),
I

i = I,..., n.

Let /0 = [0, II\U~~ I Vi' and observe that, since /0 is a closed set
containing no straddle points, we have

2r(uo; f, g) - max(lf(t) - g(t)l; t E /0) = 56 > 0. (2.16 )

Let (Yi' Yi+ I)' 1 ~ i ~ r - 1, be an interval between straddle points
containing "signed" (e)-points. If Yi >°or Yr < 1 a similar analysis can be
carried out for [0, YI) or (Yr' 11, respectively.

Assume, for concreteness, that (YI' Yr) contains a (+)-point; then it is in
/0' by the construction of the v;'s, and we may assume that the leftmost (e)­
point in (YI' Yr)n/o is a (+)-point, which we denote by ti. l • Note that

ti.1= min{t; t E (Yi' Yi+ I)' t is a (+ )-poinq.

Define

Consider now two possibilities:

(1) There exist no (-)-points in (Yi' Yi+I)' Then define

(2) There exist (-)-points in (Yi' Yi+I)' Define

tj = minjt; t E (Yi' Yi+ I) n /0' t is a (-)-poinq,

ii.1 = max{t; t E (Yi' Yi+ I) n /0' t < tj ;f(t) - uo(t)?:: r(uo;f, g) - 26f,

ij = min{t; t E (Yi' Yi+ I) n /0' t > ii,l; uo(t) - g(t)?:: r(uo; f, g) - 26}.

Note that by (2.16),1j > ii,l' We may now continue this process, depending
on the existence of (+ )-points to the right of tj. If there are none, the process
is ended by defining

ij = max {t; t E (Yi' Yi + I) n /0' uo(t) - get) ?:: r(uo; f, g) - 26}.
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Otherwise, we define

t i ,2 = min{t; t E (Yi' Yi+ I) n 10, t; < t, t-a (+ )-point}
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and continue along the same lines. Note that in view of the finiteness of
S+ (a) (we have S+ (a) < n, in fact), the process has a finite number of steps.

We apply this procedure for all intervals containing (e)-points. We have
thus constructed a set of intervals

with the following properties:

(a) Each interval contains an (e)-point. All (e)-points are contained in
the union of these intervals.

(b) If A j contains a (+)-point, then

f(t) - uo(t) ~ r(uo; f, g) - 20 for all t E Ai' (2.17)

We call this A j a (+ )-interval. If A j contains a (-)-point, then

uo(t) - get) ~ r(uo; f, g) - 20 for all tEA j . (2.18 )

This A j will be called a (-)-interval.

(c) If {Aj, ... ,Aj+d are in the same interval (Yi' Yi+l), then their signs
alternate, and there exists an interval of positive length between adjacent
A;'s. Choose an ordered sequence in E

UD
consisting of one (e)-point from

each Ai' and the straddle points. Apply the mapping x(t) to the sequence and
construct the vector {a(s;)}7=1' Here x(t) and a(s) are as defined prior to
Theorem 2.8. Note that S + [(a(s;), ..., a(SN)) 1= p < n.

We will show that there exists a function u l ' u 1 =1= uo, in Z(.T;f, g). We
start by noting that u 1 has to satisfy the p conditions implied. by the fact that
Yl ,... , Yr are straddle points, with corresponding multiplicities k l , ... , k r, viz.,

i = I, ... , r; j = 0,..., k; - 1. (2.19 )

Consider next a sequence of consecutive zeros in {a(s;)}7=1' Suppose there
are I zeros. These may correspond to the deficiency of one straddle point, or
to the combined deficiencies of several consecutive straddle points, where no
intervening (+)- or (-)-points exist. There are two possibilities: (1) The I
zeros are an initial or a final segment of the vector {a(s;)} 7= I' In this case
we do not impose additional conditions on u at the corresponding straddle
points. (2) On both sides of the segment of zeros, there exist nonzero terms.
Let the adjacent sign from the left (right) be denoted by (sgn)L [(sgn)R,
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respectively]. If (-l)'(sgn)L(sgn)R = 1, then no additional requirements are
imposed on u1 at the corresponding straddle points. If, however,
(-l)'(sgn)L(sgn)R = -1, then we require

(2.20)

where Yi' is the first straddle point corresponding to the block of I zeros.
Consider finally two adjacent non-zero terms. If the signs are identical

(this may happen only if at least one of the signs stems from a "signed"­
boundary straddle point) then no additional requirements are imposed on U t '

Suppose the terms are of opposite signs. This can happen when both
correspond to (e)-points chosen from adjacent A /s, say Am' Am + l' or when
at least one of the points is a "signed"-boundary straddle point. In the first
case, we choose a point t* in (maxAm,minA m+ i ) and require

(2.21 )

In the second case, assume that the first of the two terms corresponds to a
straddle point j. We then require

(2.22)

Observe that the total number of zeros prescribed for u1 - Uo by the
conditions of the form (2.19)-(2.22) is equal to S+ (a) = p. Indeed, consider
the case where (-1 )'(sgn)L(sgn)R = -1. The contribution of the sequence of I
zeros to S+(a) is then 1+ 1, and we have, in (2.20), adjoined one zero to the
I zeros prescribed by (2.19). The other cases are even simpler.

We now impose n - p - 1 additional conditions of coincidence at 0,

j = 0, 1,... , n - p - 2, (2.23)

where Il is the smallest derivative at 0 not previously prescribed.
Finally, if there exist "signed" (e)-eoints or "signed"-boundary straddle

points, then we choose one such point ~ and impose an n-th condition of the
form

(2.24)

where v is the smallest derivative at t not previously prescribed, and 17 is a
small number whose sign agrees with the "sign" of the point. If there exist no
"signed" points, we choose any straddle point t and require (2.24) with
17 > O.

Since Y is an extended u-unisolvent family, there exists a (unique) U 1

satisfying all of the n above-mentioned conditions. Furthermore, U 1 =I=- U by
(2.24), so that U 1 - U can have no additional zeros (counting multiplicities)
besides the n - 1 zeros prescribed in the construction.
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Hence, u 1 - U changes sign exactly at the interior zeros of odd
multiplicity. It follows that U \ > Uo on each (+) interval, U 1 < Uo on each
(-)-interval. Furthermore, if Y is a (+)-boundary straddle point of deficiency
k, then U\ > Uo in the vicinity of y, so that in view of (2.19), we must have
U~k)(y) > U&kl(y). The case of (-)-boundary straddle points is similarly
handled. Finally, if Y/ is chosen to be sufficiently small, then by the
continuity property of elements of <T (Lemma 1.2) we have II UO - u111 < 6,
so that

Collecting these results, we deduce that U 1 E Z(Y;f, g), completing the
proof in the case where no straddle point is a cluster point of (e)-points.

We consider now the general case, and describe the necessary adjustments
in the proof. Let y be a straddle point which is a cluster point of (e)-points.
As we have noted before, the finiteness of S +(a) implies that if e1 > 0 is
sufficiently small, then in (Y - eI' yl all (e)-points are of one sign, and in
(Y, y +e\) all (e)-points are of one sign (not necessarily the same sign as
before). Note in passing that if y is a (-)-boundary point, then it can be a
cluster point of (-)-points only, by the analysis in the proof of Lemma 2.5.
The analogous result holds for (+)-boundary points.

Choose e I as above, and let i, W be the largest (e)-point in (Y, y + eJ)
and the smallest (e)-point in (Y - e l , Yl. respectively. Let e(yl =
minj(i - y, y - w)}, and let

e= min{e(j); yis a cluster point of (e)-points}

e* = min{e(Yi); Yi is not a cluster point of (e)-points},

e = min(e, e*),

where e(yJ is as defined in the beginning of the proof of the necessity part.
Define next vp /0 as before and the rest of the proof can be carried out with
no further modifications. Q.E.D.

We have shown that, in contrast to the situation where one function is
approximated, the Chebyshev center of a set is not necessarily a singleton.
We will now record some simple observations concerning the set of pairs for
which Z(T;f, g) is a singleton.

We consider the space of pairs of functions (f, g), f, g E C[0, 1], and
define p[(f, g), (J, g)] = max[llf - JII, II g - gil]·

Assertion 2.9. Let f, g, f~ g, be a pair such that Z(:T;f, g) is not a
singleton. Then, for each e > 0, there exists another (J, ff) such that
p[(f, g), (J, g)] < e, and Z(:T;f, g) is not a singleton.
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Proof Let iiE Z(Y;f, g). There exist r straddle points, y" ... , Y r , with
total deficiencies hl"'" h" I = L~ hi < n. Perturb f slightly downward on one
interval not containing straddle points, obtaining 1 in this way. Then clearly
ii E Z(JT; 1, g), the r straddle points remain the only straddle points, and no
new (e)-points are created. Hence Z(,T;1, g) is not a singleton. Q.E.D.

Remark. The same proof shows that if Z(T;f, g) is a singleton, but
there exist straddle points, then there exists a pair (1, g) near (f, g) for which
Z( T; 1, g) is not a singleton.

However, the situation is different if (T;f, g) has no straddle points. The
following assertion can be easily established, using straightforward
continuity arguments.

Assertion 2.10. Let Z(, T; f, g) be a singleton, and assume no straddle
points exist. Then there exists a neighborhood V of (f, g), such that for each
pair (1, g) in V, the center Z(T; 1, g) is a singleton, and no straddle points
exist.

Using the standard methods, we can deduce a local continuity property for
the "best approximation" operator defined for such pairs, viz.,

Assertion 2.11. Let (f, g) be a pair such that (,T; f, g) has no straddle
points. Let T be defined on the set of such pairs by T(f, g) = Z ( T; f, g).
Then T is continuous at (f, g).
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